
Genome Sequences of Chikungunya Virus Isolates from Bolivia

Caio M. B. França,a Roxana Loayza,b Yelin Roca,b Ana Maria Montaño Arias,b Freddy Tinajeros,c Jose R. Loaiza,d,e,f

Anshule Takyar,g Robert H. Gilman,h Matthew J. Milleri

aDepartment of Biology, Southern Nazarene University, Bethany, Oklahoma, USA
bU.F. Biología Molecular, Centro Nacional de Enfermedades Tropicales (CENETROP), Santa Cruz, Bolivia
cAsociación Benéfica PRISMA, Santa Cruz, Bolivia
dInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Republic of Panama
eSmithsonian Tropical Research Institute, Balboa, Republic of Panama
fPrograma Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama City, Republic of Panama
gDepartment of Public Health and Department of Microbiology, University of Oklahoma, Norman, Oklahoma, USA
hBloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA
iSam Noble Museum of Natural History, University of Oklahoma, Norman, Oklahoma, USA

ABSTRACT We generated nine coding-complete chikungunya virus genome sequences
from blood samples collected during the early 2015 outbreak in Bolivia. Relative to
other publicly available chikungunya sequences, the Bolivian samples represent a
monophyletic group, suggesting that a single lineage was widely circulating in the
country between February and May 2015.

Among the Andean nations of South America, Bolivia has had the highest incidence
of chikungunya and postinfection chronic disease (1). In Bolivia, chikungunya virus

was first detected in early 2015, with cases of disease peaking between March and May
2015 (Fig. 1). Here, we report nine chikungunya (Togaviridae: Alphavirus) genome
sequences for isolates from Bolivia.

Febrile patients were screened for chikungunya virus at the Cenetrop national
tropical medicine laboratory. We selected nine archived samples (maximum of 1
passage) for sequencing; samples were selected at random (Table 1). All isolates came
from blood-extracted RNA (QIAamp viral RNA minikit; Qiagen) with unambiguously
positive quantitative PCR (qPCR) tests (Pan American Health Organization [PAHO]
diagnostic kits). Seven of the nine samples were from Santa Cruz de la Sierra. We also
included one sample from Cochabamba and one sample from Trinidad. We generated
cDNA using random hexamers via reverse transcriptase PCR (RT-PCR) (TaqMan reverse
transcription reagents; Applied Biosystems). We amplified the chikungunya genome
using a multiplex tiled amplicon approach (2). All samples were pooled and sequenced
on a single Oxford Nanopore MinION R9.4 flow cell, generating 2,776,384 reads.

Base calling was done in real time using Albacore v2.3.1, which implements quality
filtering (QC), using only QC-passed reads in subsequent analyses. We demultiplexed and
trimmed adapters and barcodes using qcat v1.1.0 (https://github.com/nanoporetech/qcat),
which detected barcodes in 2,538,578 reads (�91%) and assigned only 80 out of
2,538,578 (�0.0004%) reads to barcodes BC10 to BC12 (not used in this study, but
assignable in the qcat demultiplexing algorithm). This suggests negligible read misas-
signment during demultiplexing. The average read length for QC-passed reads was
325.4 bp (range, 100 to 3,727 bp).

For our highest read count sample (4866-15), we error corrected, trimmed, and de
novo assembled reads in Canu v1.9 (3). The resulting assembly was fragmented, so we
selected the largest contig to identify the closest whole chikungunya genome on
GenBank using BLAST (2 March 2020) (4) to guide reference-based assembly. The BLAST
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search returned GenBank accession number KY703969.1 as the closest match. We used
Canu to correct and trim all nine samples. After trimming, we retained 836,301 reads
with an average read length of 345.9 base pairs (range, 184 to 496 base pairs). We
mapped these reads to the sequence of KY703969.1 using Minimap2 (5) implemented
in Geneious v2020.0.5 (6). For each sample, we generated a consensus sequence. All
nine consensus sequences along with that from KY703969.1 were aligned in Geneious,
and we visually corrected homoplasy indel errors, which are common to Oxford
Nanopore-derived sequences (7). Default parameters were used for all bioinformatic

FIG 1 Four-week moving average of chikungunya case count across Bolivia. Red arrows indicate the collection
dates for samples sequenced in this study. Maximum likelihood phylogeny was pruned to the clade, including the
nine samples. Three nodes have significant approximate bootstrap support (�90).

TABLE 1 Results of sequencing efforts for nine chikungunya virus isolates from Bolivia

Sample name Collection date City, department
No. of
uncorrected reads

No. of corrected and
trimmed reads/% mapped

Avg depth of
coverage (�)

GenBank
accession no.

639-15 24 Feb 2015 Santa Cruz de la Sierra,
Santa Cruz

438,120 98,367/100 3,834 MT150092

4866-15 1 Mar 2015 Santa Cruz de la Sierra,
Santa Cruz

495,057 110,170/�99.9 4,055 MT150093

4990-15 1 Mar 2015 Santa Cruz de la Sierra,
Santa Cruz

369,957 69,285/100 2,590 MT150094

5037-15 26 Apr 2015 Cochabamba, Cochabamba 307,502 61,182/100 2,145 MT150095
5041-15 4 May 2015 Santa Cruz de la Sierra,

Santa Cruz
243,726 34,567/100 1,342 MT150096

5046-15 4 May 2015 Santa Cruz de la Sierra,
Santa Cruz

281,700 53,600/100 2,165 MT150097

5038-15 4 May 2015 Santa Cruz de la Sierra,
Santa Cruz

80,384 28,428/�99.9 922 MT150098

746-15 4 May 2015 Santa Cruz de la Sierra,
Santa Cruz

163,681 12,256/100 525 MT150099

710-15 27 Apr 2015 Trinidad, Beni 128,959 4,657/�99.9 193 MT150100
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tools, unless otherwise specified. The final sequence length for all nine genomes is
11,182 nucleotides (because each sequence was generated from homologous ampli-
cons tiled across the coding region, they have the same start and endpoint), repre-
senting 99.6% of the nonstructural and structural coding regions. One sample (710-15)
has uncalled bases due to poor coverage in the structural protein-coding region (163
nucleotides; 1.5%); all remaining sequences have no ambiguous bases. The average
G�C content for all nine sequences is 50.7% (range, 50.5% to 50.7%).

We downloaded from GenBank the top 400 BLAST hits to sample 4866-15 (2 March
2020) and filtered out sequences without a month and year of sample collection. We
aligned remaining sequences with our nine sequences using MAFFT (8), as imple-
mented in Geneious, and trimmed the alignment to the coding region recovered in our
sequences. We generated a maximum likelihood phylogeny using IQ-Tree v2.0-rc1 (9).
We found that the nine Bolivian sequences are part of the widespread Asian-Caribbean
chikungunya genotype and form a unique clade that was part of a larger monophyletic
lineage primarily containing sequences from Nicaragua, Aruba, Colombia, and the
United States (Fig. 1). The monophyly of our nine samples supports the hypothesis that
a single lineage was widely circulating in Bolivia during the early 2015 chikungunya
outbreak.

Data availability. Genome sequences are available in GenBank under accession

numbers MT150092 to MT150100. Sequencing reads are available in the SRA database
under BioProject accession number PRJNA609363. The input, output, and complete
maximum likelihood phylogenetic tree are available at https://doi.org/10.6084/m9
.figshare.11938047.
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